

Structural Calculations

For

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES

Gobi 410 at 45 degrees

FOR HELIODYNE, INC.

Table of Content

1	Cover Page
2	Table of Content
3	Results, Scope, and Exclusions
4	Dead and Wind Load Background
5	Clip/Rail/Footing Capacity Summary
6	Basic Loads and Load Combinations
7	Wind Load 2D Model (Dead Load and Wind A)
8	Wind Load 2D Model (Wind B and Wind C)
9	Wind Load 2D Model (Wind D)
10	Dead + Wind Analysis and Calculations (Exp "C")
11	Dead + Wind Analysis and Calculations (Exp "C") Continued
12	Dead + Wind Analysis and Calculations (Exp "B")
13	Dead + Wind Analysis and Calculations (Exp "B") Continued
14	Dead + Wind +Snow Analysis and Calculations (Exp "B")
15	Dead + Wind +Snow Analysis and Calculations (Exp "B") Continued
16	Seismic Loading Analysis
17	Base Attachment Analysis

18 Base Attachment Analysis Continued

Scope of Work

This report is for the Heliodyne Rack Stucture with Gobi 410 Collector at 45 degrees. The purpose of the analysis was to determine appropriate loadings for the Heliodyne rack structure with Gobi 410 collectors at 45 degrees following the currentmost design codes with an emphasis on California. The analysis looked at Dead loads from collectors and racking, wind loads scenarios, as well as light snow loads. Both wind exposure B and C which are frequently encountered in Califonia were considered.

Conclusion

After analysis, the rack has been determined to be adequate to support imposed loads in conditions outlined below. With the exception of special wind region and High snow areas, most low altitude California areas should be covered by the tabluated conditions. All Racking and collector parts shall be designed and installed per manufacturer's approved installation specifications.

Table 1. Design Criteria

Codes	2019 California Building Cod	de (ASCE 7-16) & 2016 Calif	ornia Building Co	ode (ASCE 7-2	10)
Risk Category	II				
Condition 1.		<u>Condition</u>	<u>12.</u>		
Wind Load	(Monoslope Open Structure	e)	Wind Load	(Monoslope	Open Structure)
	V	110 mph		V	110 mph
	Exposure	C (20 feet max height)		Exposure	В
Dead Load	D	3.3 psf	<u>Dead Load</u>	D	3.3 psf
<u>Ground Snow</u>	S	0 psf	Ground Snow	S	30 psf
<u>Seismic</u>	S _S	2.2	<u>Seismic</u>	Ss	2.2
	S _{DS}	1.5		S_{DS}	1.5

References

ASCE Minimum Design Loads for Buildings and Other Structures (ASCE7-16 and ASCE 7-10) 2015 National Design Specification for Wood Construction (NDS)

2010 Aluminum Design Manual (ADM)

Notes and Limits of Scope of Work

- 1. Racks are Installed on both long sides of the collectors with a maximum spacing of 4'
- 2. The strength of the collectors is not part of the scope of this report.
- 3. Engineer of Record for each specific site shall be responsible for its analysis and design forces
- 4. This report can be used for reference only for sites meeting conditon 1 or 2
- 5. For conditon 1, maximum building height considered is 20 feet
- 6. Engineer of Record for each specific installation shall be responsible for the design of fasteners
- 7. Atmospheric Ice loading and flood loading are beyond the scope of this report.
- 8. The rack structure in this report is defined in a drawing package prepared by Heliodyne, Inc. Titled Heliodyne Rack Installation Guide, dated 12/15/2010.

Background

After several iteration, it was evident that the mounitng clip would govern the desing. In the Heliodyne report by MATRIX Consulting Engineers, a Finite Element Analysis was performed and resulted in clip capacity at different angles. In light of this informaton, We analysed different wind speeds in combination with varying exposure categories and settled on speeds that would not result in forces greater than what the clip can handle. All the iteration focused on California

In light of new research and studies, ASCE 7-16 was introduced with mostly reduced basic wind speed maps. With the exception of special wind region, all category II structures in California have basic wind speeds of 100 mph or less. Our analysis tailored for California was run using 110 mph in order to enveloppe wind speed in ASCE 7-16 as well as ASCE 7-10.

Velocity Pressure was calculated as follow:

$q_{h} = 0.00256 Kz K_{zt} K_{d} V^{2}$	eq. 26.10-1 ASCE 7-10
$q_h = 0.00256 Kz K_{zt} K_d K_e V^2$	eq. 26.10-1 ASCE 7-16

Site specific variables are:

Basic wind speed: V Velocity pressure exposure coefficient, evaluated at height z: Kz Topographic factor: Kzt Ground elevation Factor Ke (Conservatively used 1)

The newly added ground elevation factor reduces with altitude, we opted to conservatively use 1 given many different altitude possibilities.

Non Site specific variables are:

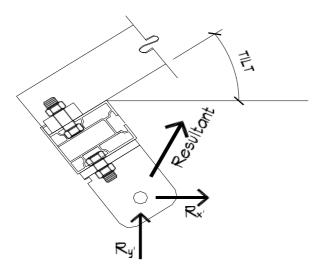
Wind directionality factor: Kd = 0.85 Gust effect factor: G = 0.85

The Net design pressure was calculated as follow:

p=q_hGC_N eq. 27.3-2 ASCE 7-16

 C_N = Net pressure Coefficient determined from fig 27.3-4 of ASCE 7-16

Load Combinations


Stength Level Combination (LRFD) per ASCE 7-16 Sections 2.3.1

LC1=	LC1= 1.2D+1.0WA
LC2=	LC2= 1.2D+1.0WB
LC3=	LC3= 1.2D+1.0WC
LC4=	LC4= 1.2D+1.0WD
LC5=	LC5= 0.9D+1.0WA
LC6=	LC6= 0.9D+1.0WB
LC7=	LC7= 0.9D+1.0WC
LC8=	LC8= 0.9D+1.0WD

Clip, Rail, and Foot Capacity Summary

Capacity below are extracted from the Heliodyne Rack Structure w/Gobi 410 Collector @ 45 degrees Report by MATRIX Consulting Engineers.

Tilt (Degrees)	Load Direction	Ry	Rx	Ry
35	Tension	-630	-361	-516
35	Comp.	1274	731	1044
45	Tension	-571	-404	-404
45	Comp.	721	510	510

Gobi

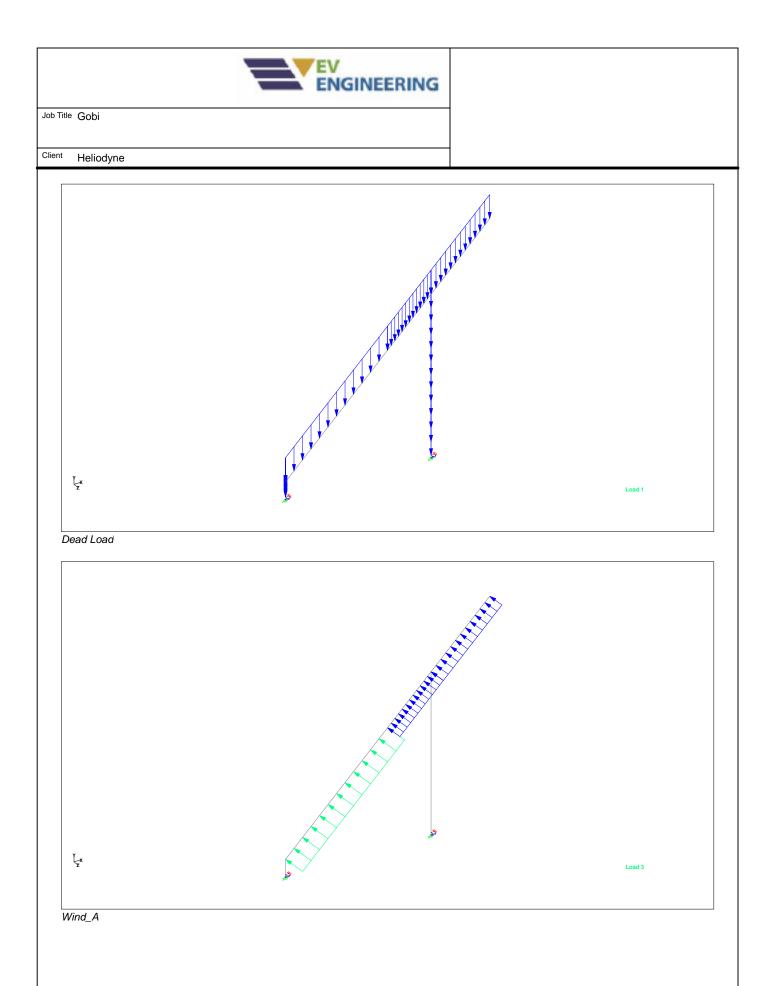
Heliodyne

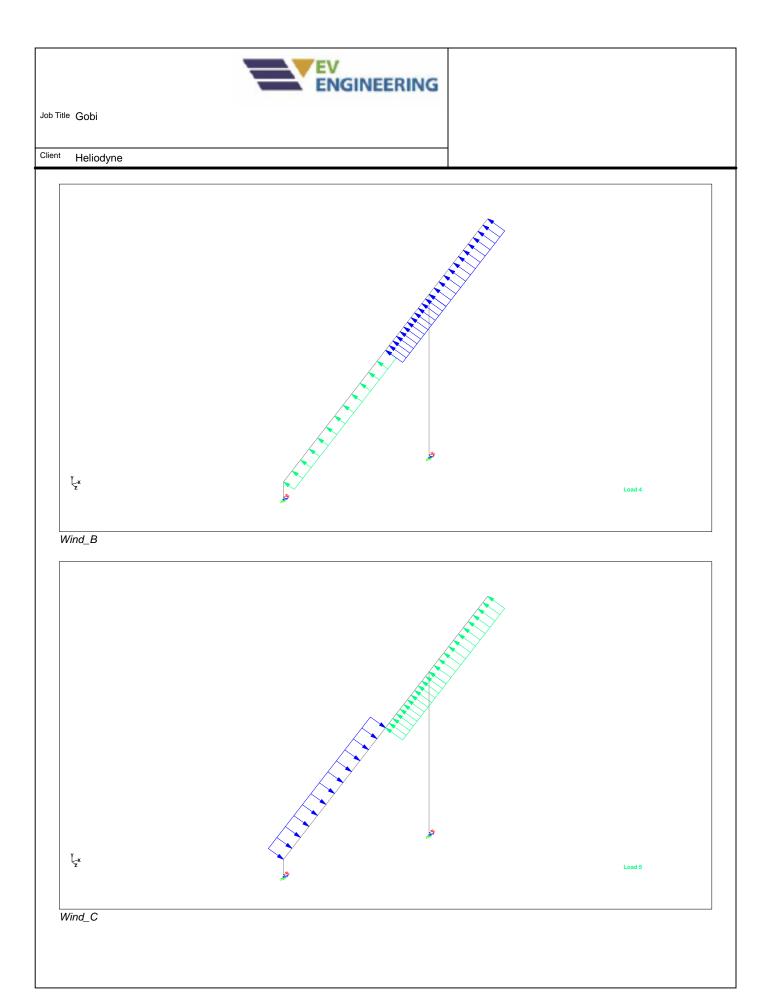
Job Information

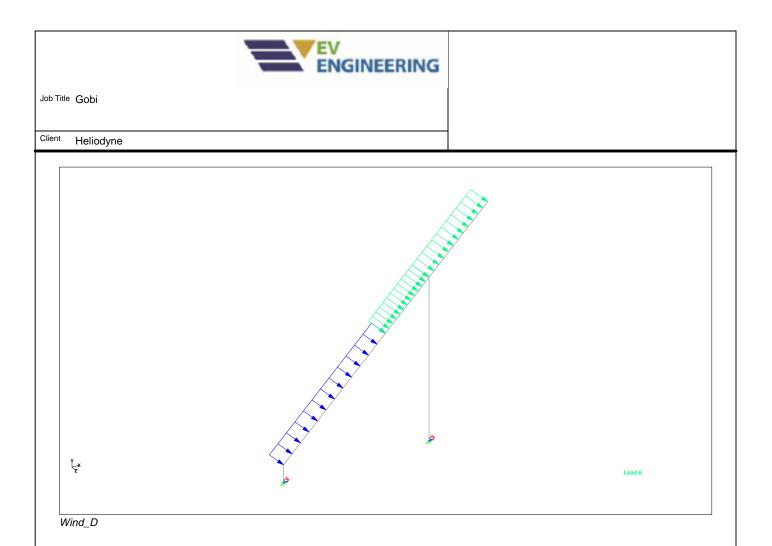
	Engineer	Checked	Approved
Name:	EM		
Date:	26-Dec-19		

Structure Type SPACE FRAME

Number of Nodes	6	Highest Node	6
Number of Elements	5	Highest Beam	5

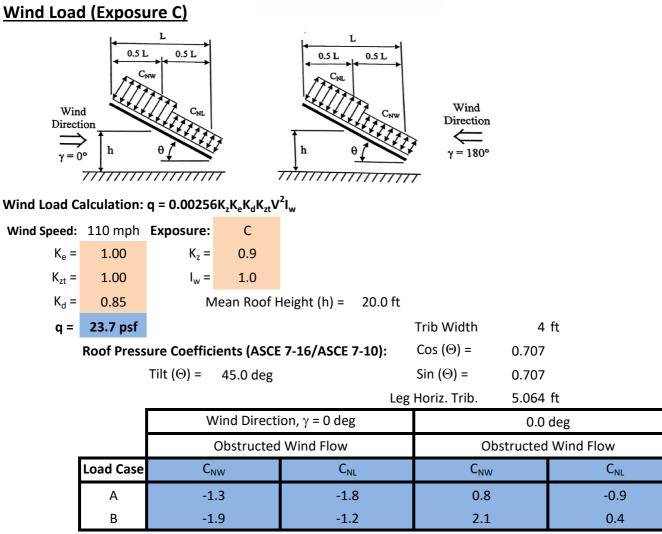

Number of Basic Load Cases	-2
Number of Combination Load Cases	27


Included in this printout are data for:


 All
 The Whole Structure

Included in this printout are results for load cases:

Туре	L/C	Name
Primary	1	DL1 - DEAD LOAD 1
Primary	2	SL1 - SNOW LOAD 1
Primary	3	WLA
Primary	4	WLB
Primary	5	WLC
Primary	6	WLD
Combination	9	1.2DL1+1.6SL1+0.5WLB
Combination	10	LRFD REACTION COMBOS
Combination	11	1.2DL1+1.6SL1+0.5WLA
Combination	12	1.2DL1+1.6SL1+0.5WLC
Combination	13	1.2DL1+1.6SL1+0.5WLD
Combination	14	1.2DL1+1.0WLA+.5SL1
Combination	15	1.2DL1+1.0WLB+.5SL1
Combination	16	1.2DL1+1.0WLC+.5SL1
Combination	17	1.2DL1+1.0WLD+.5SL1
Combination	18	0.9DL1+1.0WLA
Combination	19	0.9DL2+1.0WLB
Combination	20	0.9DL2+1.0WLC
Combination	21	0.9DL2+1.0WLD



EV Engineering, LLC projects@evengineersnet.com http://www.evengineersnet.com

Roof Pressures (p = qGC_N (psf)): G = 0.85

	Wind Directi	on, γ = 0 deg	Wind Directio	n, γ = 180 deg
	Obstructed Wind Flow		Obstructed	Wind Flow
Load Case	C _{NW}	C _{NL}	C _{NW}	C _{NL}
А	-26.2	-36.3	16.1	-18.1
В	-38.3	-24.2	42.3	8.1

	Wind Direction, $\gamma = 0 \text{ deg}$			Win	d Directio	n, γ = 180 de	g	
	Rear		Front		Fron	nt	Rea	r
	C _{NW}		C _{NL}		C _{NW}		C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
А	-375	-375	-519	-519	231	231	-260	-260
В	-548	-548	-346	-346	606	606	115	115

Dead Load	3.3 psf		
1.2D	3.96 psf	0.9D	2.97 psf
Linear	15.84 plf		11.88 plf
Per Post	80.15 lbs		60.1 lbs


Down Force 1.2D+1.0W

	V	Vind Directi	on, γ = 0 de	ġ	Win	d Directio	n, γ = 180 de	B
	Rear		Fre	ont	Fron	t	Rea	r
	C _{NW}		C	NL	C _{NW}	,	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-375	-295	-519	-439	231	311	-260	-179
В	-548	-468	-346	-266	606	686	115	196
(lbs)	Loads	Capacity	Ratio	Result				
Vertical +	686	721	0.95	ОК				
Vertical -	-468	571	0.82	ОК				
Lateral +	606	640	0.95	ОК				
Lateral -	-548	683	0.80	ОК				

Uplift	0.9D+W

	V	Vind Directi	on, γ = 0 de	g	Wind Direction, γ = 180 deg			
	Re	Rear		ont	Fron	Front Rear		r
	C _{NW}		C	NL	C _{NW}	/	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
А	-375	-315	-519	-459	231	291	-260	-200
В	-548	-488	-346	-286	606	666	115	176
(lbs)	Loads	Capacity	Ratio	Result				
Vertical +	666	721	0.92	ОК				
Vertical -	-488	571	0.85	ОК				
Lateral +	606	640	0.95	ОК				
Lateral -	-548	683	0.80	ОК				

Roof Pressures (p = qGC_N (psf)) G = 0.85

	Wind Directi	on, γ = 0 deg	Wind Direction, γ = 180 deg		
	Obstructed	Wind Flow	Obstructed Wind Flow		
Load Case	C _{NW} C _{NL}		C _{NW}	C _{NL}	
А	-20.4	-28.2	12.6	-14.1	
В	-29.8	-18.8	32.9	6.3	

	Wir	Wind Direction, $\gamma = 0 \text{ deg}$				Wind Direction, γ = 180 deg				
	Rear		Fror	nt	Front Rear			ar		
	C _{NW}		C _{NW}		C _{NL}		C _{NV}	v	C _N	L
	Х	Y	Х	Y	Х	Y	Х	Y		
A	-292	-292	-404	-404	180	180	-202	-202		
В	-427	-427	-270	-270	472	472	90	90		

Dead Load	3.3 psf		
1.2D	3.96 psf	0.9D	2.97 psf
Linear	15.84 plf		11.88 plf
Per Post	80.15 lbs		60.1 lbs

Down Force 1.2D+1.0W

	V	/ind Directi	on, γ = 0 de	eg	Wind	Wind Direction, $\gamma = 180 \text{ deg}$			
	Re	Rear		ont	Fron	Front Rear		r	
	C _{NW}		C	NL	C _{NW}	,	C _{NL}		
	Х	Y	Х	Y	Х	Y	Х	Y	
A	-292	-212	-404	-324	180	260	-202	-122	
В	-427	-347	-270	-190	472	552	90	170	
(lbs)	Loads	Capacity	Ratio	Result					
Vertical +	552	721	0.77	ОК					
Vertical -	-347	571	0.61	ОК					
Lateral +	472	640	0.74	ОК					
Lateral -	-427	683	0.63	ОК					

Uplift 0.9D+W

	V	/ind Directi	on, γ = 0 de	eg	Wind Direction, γ = 180 deg			
	Rear		Fro	ont	Fron	Front Rear		r
	C _{NW}		C	NL	C _{NW}	I	C _{NL}	-
	Х	Y	Х	Y	Х	Y	Х	Y
A	-292	-232	-404	-344	180	240	-202	-142
В	-427	-367	-270	-210	472	532	90	150
(lbs)	Loads	Capacity	Ratio	Result				
Vertical +	532	721	0.74	ОК				
Vertical -	-367	571	0.64	ОК				
Lateral +	472	640	0.74	ОК				
Lateral -	-427	683	0.63	ОК				

Wind (Exposure B) & Snow

Wind Load Calculation: $q = 0.00256K_zK_eK_dK_{zt}V^2I_w$

Vind Speed:	110 mph	Exposure:	В				
K _e =	1.00	K _z =	0.7				
K _{zt} =	1.00	I _w =	1.0				
K _d =	0.85	М	ean Roof H	eight (h) =	33.0 ft		
q =	18.5 psf					Trib Width	4 ft
	Roof Press	sure Coeffic	cients (ASC	E 7-16/ASCE	7-10):	$\cos(\Theta) =$	0.707
		Tilt (Θ) =	45.0 deg			Sin (Θ) =	0.707
					Leg	Horiz. Trib.	5.064 ft

	Wind Directi	on, γ = 0 deg	0.0 deg		
	Obstructed	Wind Flow	Obstructed Wind Flow		
Load Case	C _{NW} C _{NL}		C _{NW}	C _{NL}	
А	-1.3	-1.8	0.8	-0.9	
В	-1.9	-1.2	2.1	0.4	

Roof Pressures (p = qGC_N (psf)): G = 0.85

	Wind Directi	on, γ = 0 deg	Wind Direction, $\gamma = 180 \text{ deg}$		
	Obstructed	Wind Flow	Obstructed Wind Flow		
Load Case	C _{NW}	C _{NL}	C _{NW}	C _{NL}	
А	-20.4	-28.2	12.6	-14.1	
В	-29.8	-18.8	32.9	6.3	

	Wir	Wind Direction, $\gamma = 0 \text{ deg}$				Wind Direction, γ = 180 deg			
	Rea	r	Fron	t	Front Rear			r	
	C _{NW}		C _{NL}		C _{NW}		C _{NL}		
	Х	Y	Х	Y	Х	Y	Х	Y	
A	-292	-292	-404	-404	180	180	-202	-202	
В	-427	-427	-270	-270	472	472	90	90	

Dead Load	3.3 psf
1.2D	3.96 psf
Linear	15.84 plf
Per Post	80.15 lbs

<u>Snow Load</u> Calculation: $p_f = 0.7C_eC_tI_sp_g$

ound Snow:	30.0 psf		
C _e =	0.9		
C _t =	1.2		
I _s =	1.0		
p _f =	22.7 psf		
P _s =Cs*p _f =	9.5 psf		
Trib.=	38	<u>0.55</u>	<u>1.6S</u>
Per post=	193	96	309

Case 1 1.2D+1W+0.5S

Case I	1.20+100+	0.55						
	V	Vind Directi	on, γ = 0 de	eg	Wind	d Directio	n, γ = 180 de	g
	Re	ear	Fro	ont	Fron	t	Rear	
	C	NW	C	NL	C _{NW}	1	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-292	-115	-404	-228	180	356	-202	-26
В	-427	-250	-270	-93	472	649	90	267
					_			
(lbs)	Loads	Capacity	Ratio	Result				
Vertical +	649	721	0.90	ОК				
Vertical -	-250	571	0.44	ОК				
Lateral +	472	640	0.74	ОК				
Lateral -	-427	683	0.63	ОК				

Case 2 1.2D+0.5W+1.6S

	V	Vind Directi	on, $\gamma = 0 de$	eg	Wine	d Directio	n, γ = 180 de	g
	Re	Rear		ont	From	t	Rear	
	C	NW	C	NL	C _{NW}	1	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-146	243	-202	187	90	479	-101	288
В	-213	175	-135	254	236	625	45	434
(lbs)	Loads	Capacity	Ratio	Result				
Vertical +	625	721	0.87	ОК				
Vertical -	175	571	0.31	ОК				
Lateral +	236	640	0.37	ОК				
Lateral -	-213	683	0.31	ОК				

Seismic Loads:

Fp=

Seismic	<u>Loads:</u>					
	Importance	Factor (I) :		I		
	•	Site Class :		D	Assumed	
				2	, loounneu	
	Ss	(0.2 sec) =	7	220 %g		
		(1.0 sec) =		93 %g		
		$S_{DS} =$		1.5		
		JDS-		1.5		
	Number	of Stories:		1		
			Con	_	t and Clad	ding
	Dunum	8 0 / 5 (6 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /		.pener		8
	Tribu	tary Area=		40.5	ft ²	
	Amplification fa	ictor, ap =		1		
S	pectral Accelerat	•		1.5		
	perating Weight,	-		3.3		
	e Modification Fa			1.5		
·	Importance Fa	•		1		
	Reduction	•		1		
Height	above ground lev			33		
5	Mean heig			33		
	0	, ()				
$o = 0.4 \text{ ap } S_{DS}$	Wp* (1+2*z/h)=	1.173	gW			
	(Rp/lp)		1-			
En Min	1. 0.3 S _{DS} Ip Wp=	0.44	11/0			
-		0.44	•			
Fp Max	. 1.6 S _{DS} Ip Wp=	2.35	Wp			
Forces in X-						
I	Eh=p Fp Wp Lp=	156.9		<	472	lbs
Forces in Y-			Win	d Gove	rns	
Ev	=0.2 S _{DS} Wp Lp=	39.2		<	427	lbs
			Win	d Gove	rns	

Anchor Design

Wind Load Ca	Wind Load Calculation: $q = 0.00256K_zK_eK_dK_{zt}V^2I_w$								
Wind Speed:	110 mph	Exposure:	С						
K _e =	1.00	K _z =	0.9						
K _{zt} =	1.00	I _w =	1.0						
K _d =	0.85	М	ean Roof H	leight (h) = 20.0 ft					
q =	23.7 psf				Trib Width	4	ft		
	Roof Press	sure Coeffic	ients (ASC	E 7-16/ASCE 7-10):	$\cos(\Theta) =$	0.707			
		Tilt (Θ) =	45.0 deg		Sin (Θ) =	0.707			
				Leg	Horiz. Trib.	5.064	ft		
		W	/ind Directi	on, γ = 0 deg		0.0	deg		
		(Obstructed	Wind Flow	Ob	structed	Wind Flow		
	Load Case	C _N	IW	C _{NL}	C _{NW}		C _{NL}		
	А	-1	.3	-1.8	0.8		-0.9		
	В	-1	.9	-1.2	2.1		0.4		
	Roof Pressures (p = qGC_N (psf)): $G = 0.85$								

	Wind Directi	on, γ = 0 deg	Wind Directio	n, γ = 180 deg
	Obstructed	Wind Flow	Obstructed	Wind Flow
Load Case	C _{NW}	C _{NL}	C _{NW}	C _{NL}
А	-26.2	-36.3	16.1	-18.1
В	-38.3	-24.2	42.3	8.1

	Wir	nd Directi	on, γ = 0 deg		Wind Direction, $\gamma = 180 \text{ deg}$			
	Rear		Rear Front		Front		Rear	
	C _{NW}		C _{NL}		C _{NW}		C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-375	-375	-519	-519	231	231	-260	-260
В	-548	-548	-346	-346	606	606	115	115

<u>Snow Load</u> Ca	lculation:	$p_f = 0.7C_eC_tI_sp_g$	Dead Load	3.3 psf
iround Snow:	30.0 psf		D	3.3 psf
C _e =	0.9		Linear	13.2 plf
C _t =	1.2		Per Post	66.79 lbs
I _s =	1.0			
p _f =	22.7 psf			
P _s =Cs*p _f =	9.5 psf			
Trib.= 38		<u>0.755</u>	0.6D	40.08 lbs
Per post=	193	145		

Case 1	D+0.75(0.6V	V)+0.75S						
	Wi	nd Directi	on, γ = 0 deg		Wine	d Directior	n, γ = 180 de	5
	Rea	r	Fron	t	Fron	t	Rear	
	C _{NV}	V	C _{NL}		C _{NW}	,	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-169	43	-234	-22	104	315	-117	95
E	-247	-35	-156	56	273	484	52	263
Case 2	D+0.6W							
	Wi	nd Directi	on, γ = 0 deg		Wine	d Directior	n, γ = 180 de	g
	Rea	r	Fron	t	Fron	t	Rear	
	C _{NV}	V	C _{NL}		C _{NW}	,	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-225	-158	-312	-245	138	205	-156	-89
E	-329	-262	-208	-141	364	430	69	136
Case 3	0.6D+0.6W							
	Wi	nd Directi	on, γ = 0 deg		Wind Direction		n, γ = 180 deg	
	Rea	r	Fron	t	Fron	t	Rear	
	C _{NV}	V	C _{NL}		C _{NW}	,	C _{NL}	
	Х	Y	Х	Y	Х	Y	Х	Y
A	-225	-185	-312	-272	138	179	-156	-116
E	-329	-289	-208	-168	364	404	69	109
	Lag Screw C	onnection	<u>l</u>					
Attac	hement max.	spacing=	4 ft					
3/8" Lag So	rew Withdra	wl Value=	305 lb	/in	Table 12.2A	- NDS		

3/8" Lag Screw Withdraw	l Value=	305 lb/in	Table 12.2	2A - NDS	
Lag Screw Pene	tration=	3 in	No. 2 DFL	assumed	
Prying Co					
Allowable Capacity v	with CD= 1	1045.7 lbs			
Net Uplift	289 lbs				
Max shear	364 lbs	<	576 lbs	Ok	
Max Moment	2075 ft-in	I.			
Tension/Compression	691.6 lbs				
Total Uplift (envelope)	692 lbs	<	1046 lbs	Ok	

Pv seismic dead weight is negligible to result in significant seismic uplift, therefore the wind uplift Embedment is measured from the top of the framing member to the tapered tip of a lag screw. Embedment in sheading or other material does not count.

In this design, 3/8" diameter lag bolts with a minimum 3" effective embedment as defined above into a DFL #2 or better is sufficient provided NDS 2015 design requirements are followed.

Design of the framing supporting Gobi 410 is not part of our scope and should be verified and confirmed by the SEOR.